Leinert sets and complemented ideals in Fourier algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra and Involution Ideals in $BCK$-algebras

In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...

متن کامل

Complemented Ordered Sets

We introduce the concept of complementary elements in ordered sets. If an ordered set S is a lattice, this concept coincides with that for lattices. The connections between distributivity and the uniqueness of complements are shown and it is also shown that modular complemented ordered sets represents \geometries" which are more general than projective planes. It was shown in 2], 4] and 6] that...

متن کامل

Zero sets in pointfree topology and strongly $z$-ideals

In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...

متن کامل

Complemented congruences on Ockham algebras

An Ockham algebra L = (L,∧,∨, f, 0, 1) that satisfies the identity f2n+m = fm, n ∈ N and m ∈ N0, is called a Kn,m-algebra. Generalizing some results obtained in [2], J. Varlet and T. Blyth, in [3, Chapter 8], study congruences on K1,1-algebras. In particular, they describe the complement (when it exists) of a principal congruence and characterize these congruences that are complemented. In this...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2017

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm8733-3-2017